On Computations in Kummer Extensions
نویسندگان
چکیده
منابع مشابه
Weierstrass semigroups from Kummer extensions
The Weierstrass semigroups and pure gaps can be helpful in constructing codes with better parameters. In this paper, we investigate explicitly the minimal generating set of the Weierstrass semigroups associated with several totally ramified places over arbitrary Kummer extensions. Applying the techniques provided by Matthews in her previous work, we extend the results of specific Kummer extensi...
متن کاملFactor Base Discrete Logarithms in Kummer Extensions
The discrete logarithm over finite fields of small characteristic can be solved much more efficiently than previously thought. This algorithmic breakthrough is based on pinpointing relations among the factor base discrete logarithms. In this paper, we concentrate on the Kummer extension Fq2(q−1) = Fq2 [x]/(x q−1 − A). It has been suggested that in this case, a small number of degenerate relatio...
متن کاملHeegner Points over Towers of Kummer Extensions
Let E be an elliptic curve, and let Ln be the Kummer extension generated by a primitive pnth root of unity and a pn-th root of a for a fixed a ∈ Q − {±1}. A detailed case study by Coates, Fukaya, Kato and Sujatha and V. Dokchitser has led these authors to predict unbounded and strikingly regular growth for the rank of E over Ln in certain cases. The aim of this note is to explain how some of th...
متن کاملAlgebraic Geometric codes from Kummer Extensions
In the early eighties tools from algebraic geometry were applied by V. Goppa to construct linear codes using algebraic curves over finite fields, see [7]. Nowadays these codes are called algebraic-geometric codes, AG codes for short. The starting point in the construction of an AG code is a projective, absolutely irreducible, non singular algebraic curve X of genus g ≥ 1 defined over the finite...
متن کاملHopf Galois structures on Kummer extensions of prime power degree
Let K be a field of characteristic not p (an odd prime), containing a primitive p-th root of unity ζ, and let L = K[z] with x n − a the minimal polynomial of z over K: thus L|K is a Kummer extension, with cyclic Galois group G = 〈σ〉 acting on L via σ(z) = ζz. T. Kohl, 1998, showed that L|K has pn−1 Hopf Galois structures. In this paper we describe these Hopf Galois structures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2001
ISSN: 0747-7171
DOI: 10.1006/jsco.2000.1013